This algorithm is based on chmike's, but the vector of reorder indices is const
. This function agrees with his for all 11! permutations of [0..10]. The complexity is O(N^2), taking N as the size of the input, or more precisely, the size of the largest orbit.
See below for an optimized O(N) solution which modifies the input.
template< class T >
void reorder(vector<T> &v, vector<size_t> const &order ) {
for ( int s = 1, d; s < order.size(); ++ s ) {
for ( d = order[s]; d < s; d = order[d] ) ;
if ( d == s ) while ( d = order[d], d != s ) swap( v[s], v[d] );
}
}
Here's an STL style version which I put a bit more effort into. It's about 47% faster (that is, almost twice as fast over [0..10]!) because it does all the swaps as early as possible and then returns. The reorder vector consists of a number of orbits, and each orbit is reordered upon reaching its first member. It's faster when the last few elements do not contain an orbit.
template< typename order_iterator, typename value_iterator >
void reorder( order_iterator order_begin, order_iterator order_end, value_iterator v ) {
typedef typename std::iterator_traits< value_iterator >::value_type value_t;
typedef typename std::iterator_traits< order_iterator >::value_type index_t;
typedef typename std::iterator_traits< order_iterator >::difference_type diff_t;
diff_t remaining = order_end - 1 - order_begin;
for ( index_t s = index_t(), d; remaining > 0; ++ s ) {
for ( d = order_begin[s]; d > s; d = order_begin[d] ) ;
if ( d == s ) {
-- remaining;
value_t temp = v[s];
while ( d = order_begin[d], d != s ) {
swap( temp, v[d] );
-- remaining;
}
v[s] = temp;
}
}
}
And finally, just to answer the question once and for all, a variant which does destroy the reorder vector (filling it with -1's). For permutations of [0..10], It's about 16% faster than the preceding version. Because overwriting the input enables dynamic programming, it is O(N), asymptotically faster for some cases with longer sequences.
template< typename order_iterator, typename value_iterator >
void reorder_destructive( order_iterator order_begin, order_iterator order_end, value_iterator v ) {
typedef typename std::iterator_traits< value_iterator >::value_type value_t;
typedef typename std::iterator_traits< order_iterator >::value_type index_t;
typedef typename std::iterator_traits< order_iterator >::difference_type diff_t;
diff_t remaining = order_end - 1 - order_begin;
for ( index_t s = index_t(); remaining > 0; ++ s ) {
index_t d = order_begin[s];
if ( d == (diff_t) -1 ) continue;
-- remaining;
value_t temp = v[s];
for ( index_t d2; d != s; d = d2 ) {
swap( temp, v[d] );
swap( order_begin[d], d2 = (diff_t) -1 );
-- remaining;
}
v[s] = temp;
}
}